论文标题

MW-Motivic Sopomology中的投射捆绑捆

Projective Bundle Theorem in MW-Motivic Cohomology

论文作者

Yang, Nanjun

论文摘要

我们提出了MW-MOTIVES(分别Chow-Witt Rings)中的投影捆绑捆绑定理的版本,该版本说$ \ widetilde {ch}^*(\ Mathbb {p}(e))$由$ \ widetilde {ch}^*(ch}^*(x)$,$ \ wideTildeLdeLdeLe $ ch^*(x)$和$ sq^2 $用于平滑准标记方案$ x $和vector Bundles $ e $ over $ x $,带有$ e(e^{\ vee})= 0 \ in H^n(x,x,w(det(e))$,规定为$ _2ch^*(x)= 0 $。 作为应用程序,我们计算了带有光滑中心的爆炸的MW动力。此外,我们讨论了在矢量束的自动形态下,投影束的盘野战赛循环的不变性。

We present a version of projective bundle theorem in MW-motives (resp. Chow-Witt rings), which says that $\widetilde{CH}^*(\mathbb{P}(E))$ is determined by $\widetilde{CH}^*(X)$, $\widetilde{CH}^*(X,det(E)^{\vee})$, $CH^*(X)$ and $Sq^2$ for smooth quasi-projective schemes $X$ and vector bundles $E$ over $X$ with $e(E^{\vee})=0\in H^n(X,W(det(E)))$, provided that $_2CH^*(X)=0$. As an application, we compute the MW-motives of blow-ups with smooth centers. Moreover, we discuss the invariance of Chow-Witt cycles of projective bundles under automorphisms of vector bundles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源