论文标题

关于使用量子算法的抽样和推理

On Sampling and Inference using Quantum Algorithms

论文作者

Ashutosh, S, Sarmah, Deepankar, Pramanik, Sayantan, Chandra, M Girish

论文摘要

预计量子计算机可以有效地处理Markov网络的吉布斯采样和相关推断。除了注意到在量子机学习的这一重要线程中启动探索的人有用的背景信息外,我们通过广泛的模拟获得了一些基于量子退火和量子近似优化算法的大量采样范式获得的结果和观察结果。

Quantum computers are projected to handle the Gibbs sampling and the related inference on Markov networks effectively. Apart from noting the background information useful for those starting the explorations in this important thread of Quantum Machine Learning, we capture some results and observations obtained through extensive simulations with two popular paradigms of sampling based on Quantum Annealing and Quantum Approximate Optimization Algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源