论文标题

J-Q $ _3 $旋转链中的短疑问量子量大动态

Short-imaginary-time quantum critical dynamics in the J-Q$_3$ spin chain

论文作者

Shu, Yu-Rong, Yin, Shuai

论文摘要

我们研究了J-Q $ _3 $旋转链中的短构想时间量子临界动力学(SITQCD),该链构成了一个准长阶阶段,直达价值键固体过渡。通过使用具有饱和有序阶段的SITQCD的缩放形式,我们可以将临界点定位为$ q _ {\ rm c} = 0.170(14)$。我们还获得了关键的初始滑移指数$θ= -0.507(3)$和静态指数$β/ν= 0.498(2)$。更引人注目的是,我们发现初始顺序参数$ x_ {0} $的缩放维度接近零,这表明初始顺序参数是边缘运算符。结果,在该模型的短期象征时间放松过程中,订单参数的初始增加行为没有与Ising-type相变的弛豫动力学大不相同。我们的数值结果由投影仪量子蒙特卡洛算法实现。

We study the short-imaginary-time quantum critical dynamics (SITQCD) in the J-Q$_3$ spin chain, which hosts a quasi-long-range-order phase to a valence bond solid transition. By using the scaling form of the SITQCD with a saturated ordered phase, we are able to locate the critical point at $q_{\rm c}=0.170(14)$. We also obtain the critical initial slip exponent $θ=-0.507(3)$ and the static exponent $β/ν=0.498(2)$. More strikingly, we find that the scaling dimension of the initial order parameter $x_{0}$ is close to zero, which suggests that the initial order parameter is a marginal operator. As a result, there is no initial increase behavior of the order parameter in the short-imaginary-time relaxation process for this model, which is very different from the relaxation dynamics in the Ising-type phase transitions. Our numerical results are realized by the projector quantum Monte Carlo algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源