论文标题

对数复杂几何形状的分析半通差

Analytic semi-universal deformations in logarithmic complex geometry

论文作者

Caputo, Raffaele

论文摘要

我们表明,每个紧凑的复杂分析空间都具有精细的对数结构,并且在此类空间之间的每一个形态都允许半宇宙变形。这些结果推广了类似的结果,即首先由A. Douady和H. Grauert在'70中独立证明的复杂分析几何形状。我们遵循杜迪(Douady)的两个步骤方法方法,包括半宇宙变形空间的无限二维结构,然后是有限维度的降低。

We show that every compact complex analytic space endowed with a fine logarithmic structure and every morphism between such spaces admit a semi-universal deformation. These results generalize the analogous results in complex analytic geometry first independently proved by A. Douady and H. Grauert in the '70. We follow Douady's two steps process approach consisting of an infinite-dimensional construction of the semi-universal deformation space followed by a finite-dimensional reduction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源