论文标题
钻石中硅氮化复合物的电子结构和磁光学特性
Electronic structure and magneto-optical properties of silicon-nitrogen-vacancy complexes in diamond
论文作者
论文摘要
钻石中的硅胶囊(SIV)和氮呈(NV)中心通常被视为固态量子信息处理的典型缺陷。在这里,我们表明,当将硅和氮同时引入钻石晶格中时,这些缺陷可以强烈相互作用并形成更大的复合物。氮原子与SI和SIV中心强烈结合,并且可能发生复杂形成。使用杂交密度功能理论(DFT)和组理论的组合,我们分析了电子结构并提供各种有用的物理特性,例如超细结构,准环境振动模式和零孔子线,以实现这些复合物的实验鉴定。我们证明,与氮相邻的替代硅的存在显着将供体水平转移到传导带,从而导致罪中心的活化能与磷的活化能。我们还发现,由于其光子发射$ \ sim $ 1530 nm,中立的SINV中心尤其引起了人们的关注,该光子发射$ \ sim $ 1530 nm,它属于电信波长的C频段及其顺磁性。此外,与SINV $^0 $颜色中心相关的光学转变表现出非常小的电子 - Phonon耦合(Huang-Rhys raction〜= 〜0.78),从而产生了高量子效率(Debye-Waller = 46 \%\%),用于单光子发射。这些功能使这个新中心非常吸引人在可扩展的量子电信网络中的潜在应用。
The silicon-vacancy (SiV) and nitrogen-vacancy (NV) centers in diamond are commonly regarded as prototypical defects for solid-state quantum information processing. Here we show that when silicon and nitrogen are simultaneously introduced into the diamond lattice these defects can strongly interact and form larger complexes. Nitrogen atoms strongly bind to Si and SiV centers and complex formation can occur. Using a combination of hybrid density functional theory (DFT) and group theory, we analyze the electronic structure and provide various useful physical properties, such as hyperfine structure, quasi-local vibrational modes, and zero-phonon line, to enable experimental identification of these complexes. We demonstrate that the presence of substitutional silicon adjacent to nitrogen significantly shifts the donor level toward the conduction band, resulting in an activation energy for the SiN center that is comparable to phosphorus. We also find that the neutral SiNV center is of particular interest due to its photon emission at $\sim$1530 nm, which falls within the C band of telecom wavelengths, and its paramagnetic nature. In addition, the optical transition associated with the SiNV$^0$ color center exhibits very small electron--phonon coupling (Huang--Rhys factor~=~0.78) resulting in high quantum efficiency (Debye-Waller factor = 46\%) for single-photon emission. These features render this new center very attractive for potential application in scalable quantum telecommunication networks.