论文标题

COVID-19图像数据收集:前瞻性预测是未来

COVID-19 Image Data Collection: Prospective Predictions Are the Future

论文作者

Cohen, Joseph Paul, Morrison, Paul, Dao, Lan, Roth, Karsten, Duong, Tim Q, Ghassemi, Marzyeh

论文摘要

在全球冠状病毒疾病2019年(Covid-19)热点地区,简化患者诊断和管理的需求比以往任何时候都变得更加紧迫。作为主要成像工具之一,胸部X射线(CXR)很常见,快速,无创,相对便宜且潜在的床边以监测疾病的发展。本文介绍了第一个公共Covid-19图像数据收集以及对数据可能的用例进行初步探索。该数据集目前包含数百个正面视图X射线,是Covid-19图像和预后数据的最大公共资源,使其成为开发和评估工具以帮助治疗Covid-19的必要资源。它是从出版物数据以及各种基于Web的存储库中手动汇总到机器学习(ML)友好格式的,并随附数据加载器代码。我们收集了额叶和侧视图图像和元数据,例如第一次症状,重症监护病房(ICU)状态,生存状况,插管状态或医院位置以来的时间。我们为数据提供了多种可能的用例,例如预测对ICU的需求,预测患者的生存以及在治疗过程中了解患者的轨迹。可以在此处访问数据:https://github.com/ieee8023/covid-chestxray-dataset

Across the world's coronavirus disease 2019 (COVID-19) hot spots, the need to streamline patient diagnosis and management has become more pressing than ever. As one of the main imaging tools, chest X-rays (CXRs) are common, fast, non-invasive, relatively cheap, and potentially bedside to monitor the progression of the disease. This paper describes the first public COVID-19 image data collection as well as a preliminary exploration of possible use cases for the data. This dataset currently contains hundreds of frontal view X-rays and is the largest public resource for COVID-19 image and prognostic data, making it a necessary resource to develop and evaluate tools to aid in the treatment of COVID-19. It was manually aggregated from publication figures as well as various web based repositories into a machine learning (ML) friendly format with accompanying dataloader code. We collected frontal and lateral view imagery and metadata such as the time since first symptoms, intensive care unit (ICU) status, survival status, intubation status, or hospital location. We present multiple possible use cases for the data such as predicting the need for the ICU, predicting patient survival, and understanding a patient's trajectory during treatment. Data can be accessed here: https://github.com/ieee8023/covid-chestxray-dataset

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源