论文标题
持续功能和扰动系列:$ O(n)$ - 对称$ ϕ^4 $字段理论在弱耦合极限限制限制$ O(n)$ - 对称$ ϕ^4 $的简单工具
Continued functions and perturbation series: Simple tools for convergence of diverging series in $O(n)$-symmetric $ϕ^4$ field theory at weak coupling limit
论文作者
论文摘要
我们确定了描述空间不同维度连续相变的通用关键指数。我们使用持续功能没有任何外部未知参数来获得来自$ O(n)$ - 对称$ ϕ^4 $字段理论的最近派生的7 loop $ε$扩展的分析延续。采用新的混合持续功能,我们获得了关键指数$α= -0.0121(22)$,用于超氟氦的相变,与最准确的实验值紧密匹配。该结果解决了$ O(2)$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ n $模型之间的长期差异,称为“ $λ$ - 点特定的热实验性异常”。此外,我们还研究了此类持续功能在其他现场理论示例中的适用性。
We determine universal critical exponents that describe the continuous phase transitions in different dimensions of space. We use continued functions without any external unknown parameters to obtain analytic continuation for the recently derived 7- loop $ε$ expansion from $O(n)$-symmetric $ϕ^4$ field theory. Employing a new blended continued function, we obtain critical exponent $α=-0.0121(22)$ for the phase transition of superfluid helium which matches closely with the most accurate experimental value. This result addresses the long-standing discrepancy between the theoretical predictions and precise experimental result of $O(2)$ $ϕ^4$ model known as "$λ$-point specific heat experimental anomaly". Further we have also examined the applicability of such continued functions in other examples of field theories.