论文标题
Motionet:与骨架一致性的单眼视频中的3D人类运动重建
MotioNet: 3D Human Motion Reconstruction from Monocular Video with Skeleton Consistency
论文作者
论文摘要
我们介绍Motionet,这是一个深层神经网络,直接重建了单眼视频中3D人类骨架的运动。虽然先前的方法依靠索具或逆运动学或逆运动学(IK)将一致的骨架与时间相干的联合旋转相关联,但我们的方法是直接输出动作的数据,即动态的第一个数据,共同的骨架,是一个完整的骨架,是一个完整的骨架。在我们方法的关键时刻,有一个深神网络,具有嵌入式运动学先验,将2D关节位置的序列分解为两个单独的属性:一个单独的,对称性,骨骼,由骨长编码,由骨长和3D关节旋转序列与全球根位置和脚接触标签相关。这些属性被馈入输出3D位置的综合前向运动学(FK)层,并将其与地面真相进行比较。另外,对恢复旋转的速度的对抗损失应用,以确保它们位于自然关节旋转的多种状态上。我们方法的关键优点是,它学会了直接从训练数据中推断出自然的关节旋转,而不是假设基础模型,或者使用数据敏捷的IK求解器从关节位置推断出来。我们表明,执行单个一致的骨骼以及时间连贯的关节旋转会限制解决方案空间,从而更加强大地处理自我十分和深度歧义。
We introduce MotioNet, a deep neural network that directly reconstructs the motion of a 3D human skeleton from monocular video.While previous methods rely on either rigging or inverse kinematics (IK) to associate a consistent skeleton with temporally coherent joint rotations, our method is the first data-driven approach that directly outputs a kinematic skeleton, which is a complete, commonly used, motion representation. At the crux of our approach lies a deep neural network with embedded kinematic priors, which decomposes sequences of 2D joint positions into two separate attributes: a single, symmetric, skeleton, encoded by bone lengths, and a sequence of 3D joint rotations associated with global root positions and foot contact labels. These attributes are fed into an integrated forward kinematics (FK) layer that outputs 3D positions, which are compared to a ground truth. In addition, an adversarial loss is applied to the velocities of the recovered rotations, to ensure that they lie on the manifold of natural joint rotations. The key advantage of our approach is that it learns to infer natural joint rotations directly from the training data, rather than assuming an underlying model, or inferring them from joint positions using a data-agnostic IK solver. We show that enforcing a single consistent skeleton along with temporally coherent joint rotations constrains the solution space, leading to a more robust handling of self-occlusions and depth ambiguities.