论文标题

表面声波驱动的半月板的分叉研究

Bifurcation study for a surface-acoustic-wave driven meniscus

论文作者

Mitas, Kevin David Joachim, Manor, Ofer, Thiele, Uwe

论文摘要

分析了由雷利表面声波驱动的弯月面模型(SAW),该模型与经典的Landau-Levich或拖动 - 胶片问题密切相关,其中一个问题与浴室持续从浴缸中持续撤回板。我们认为,通过derjaguin(或脱节)压力掺入了润湿性的介质流体动力学模型,并结合了锯式驱动以及从拖放膜问题中知道的元素。对于一维底物,即忽略横向扰动,我们采用数值路径延续来详细研究各种发生的稳定和时间周期态如何取决于相关的控制参数,例如韦伯数和锯强度。分析了与锯引起的定性跃迁相关的分叉结构,并特别注意{Hopf分叉的外观和相互作用,在这种情况下出现了时间周期状态的分支。后者对应于半月板上液脊的定期脱落。所获得的信息与整个拖动电影问题的类别有关。

A thin-film model for a meniscus driven by Rayleigh surface acoustic waves (SAW) is analysed, a problem closely related to the classical Landau-Levich or dragged-film problem where a plate is withdrawn at constant speed from a bath. We consider a mesoscopic hydrodynamic model for a partially wetting liquid, were wettability is incorporated via a Derjaguin (or disjoining) pressure and combine SAW driving with the elements known from the dragged-film problem. For a one-dimensional substrate, i.e., neglecting transverse perturbations, we employ numerical path continuation to investigate in detail how the various occurring steady and time-periodic states depend on relevant control parameters like the Weber number and SAW strength. The bifurcation structure related to qualitative transitions caused by the SAW is analysed with particular attention on the {appearance and interplay of Hopf bifurcations where branches of time-periodic states emerge. The latter correspond to the regular shedding of liquid ridges from the meniscus. The obtained information is relevant to the entire class of dragged-film problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源