论文标题

热物理学和太空天气预报中的机器学习:发现和建议的白皮书

Machine Learning in Heliophysics and Space Weather Forecasting: A White Paper of Findings and Recommendations

论文作者

Nita, Gelu, Georgoulis, Manolis, Kitiashvili, Irina, Sadykov, Viacheslav, Camporeale, Enrico, Kosovichev, Alexander, Wang, Haimin, Oria, Vincent, Wang, Jason, Angryk, Rafal, Aydin, Berkay, Ahmadzadeh, Azim, Bai, Xiaoli, Bastian, Timothy, Boubrahimi, Soukaina Filali, Chen, Bin, Davey, Alisdair, Fereira, Sheldon, Fleishman, Gregory, Gary, Dale, Gerrard, Andrew, Hellbourg, Gregory, Herbert, Katherine, Ireland, Jack, Illarionov, Egor, Kuroda, Natsuha, Li, Qin, Liu, Chang, Liu, Yuexin, Kim, Hyomin, Kempton, Dustin, Ma, Ruizhe, Martens, Petrus, McGranaghan, Ryan, Semones, Edward, Stefan, John, Stejko, Andrey, Collado-Vega, Yaireska, Wang, Meiqi, Xu, Yan, Yu, Sijie

论文摘要

这份白皮书的作者于2020年1月16日至17日在新泽西州新泽西州纽瓦克市的新泽西州纽瓦克开会,举办了为期两天的研讨会,将一组热电学家,数据提供者,专家建模者和计算机/数据科学家汇集在一起​​。他们的目标是讨论用于在热物理学中应用机器和/或深度学习技术应用于数据分析,建模和预测的关键发展和前景,并制定了该领域进一步发展的策略。研讨会结合了一组全体会议,其中包括受邀的介绍性演讲,并与一系列公开的讨论会议交织在一起。讨论的结果封装在这份白皮书中,还列出了参与者商定的顶级建议列表。

The authors of this white paper met on 16-17 January 2020 at the New Jersey Institute of Technology, Newark, NJ, for a 2-day workshop that brought together a group of heliophysicists, data providers, expert modelers, and computer/data scientists. Their objective was to discuss critical developments and prospects of the application of machine and/or deep learning techniques for data analysis, modeling and forecasting in Heliophysics, and to shape a strategy for further developments in the field. The workshop combined a set of plenary sessions featuring invited introductory talks interleaved with a set of open discussion sessions. The outcome of the discussion is encapsulated in this white paper that also features a top-level list of recommendations agreed by participants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源