论文标题
福卡亚爆炸类别
Fukaya categories of blowups
论文作者
论文摘要
我们在以下意义上计算紧凑型理性象征性歧管的fukaya类别:假设Lagrangian Branes的集合满足了Abouzaid的标准,即对散装型福克亚群岛类别的分裂生成干净地切换的branececting Lagrancectiting Lagranding Lagranding Lagrangans Branes。我们表明,对于一个小的爆炸参数,它们在爆炸中的反向图像以及爆炸的福卡亚类别附近的一系列麸皮集合。这对拜耳的量子共同体分类为结果,这是对最小模型程序中发生过渡的福卡亚类别的行为的更一般猜想的描述,即MMP过渡会产生其他求和。
We compute the Fukaya category of the symplectic blowup of a compact rational symplectic manifold at a point in the following sense: Suppose a collection of Lagrangian branes satisfy Abouzaid's criterion for split-generation of a bulk-deformed Fukaya category of cleanly-intersecting Lagrangian branes. We show that for a small blow-up parameter, their inverse images in the blowup together with a collection of branes near the exceptional locus split-generate the Fukaya category of the blowup. This categorifies a result on quantum cohomology by Bayer and is an example of a more general conjectural description of the behavior of the Fukaya category under transitions occuring in the minimal model program, namely that mmp transitions generate additional summands.