论文标题
Yang-Mills连接在共同紧凑的歧管上
Yang-Mills Connections on Conformally Compact Manifolds
论文作者
论文摘要
我们研究杨的模量空间 - 捆绑在捆绑上的连接,上面是紧凑的compline $ \ overline {m} $。我们证明,对于满足适当的非过性条件的每个杨氏连接$ a $,对于每个小变形$γ$的$ a_ {| \ poartial \ partial \ poartial \ poartline {m}} $,内部有一个yang-gr-密尔斯连接,它扩展了$ a__ a_ a_ a_ a_ {| \ partial partial \ operline \ operline \ operline \ operline \ operline \ operline \ operline \ operline \ operline \ operline \ operline \ overline \ pline {$}。作为推论,我们证实了Witten在其基础论文中提到的有关全息[Arxiv:Hep-Th/9802150]的期望。
We study the moduli space of Yang--Mills connections on bundles over a conformally compact manifold $\overline{M}$. We prove that, for every Yang--Mills connection $A$ that satisfies an appropriate nondegeneracy condition, and for every small deformation $γ$ of $A_{|\partial\overline{M}}$, there is a Yang--Mills connection in the interior that extends $A_{|\partial\overline{M}}+γ$. As a corollary, we confirm an expectation of Witten mentioned in his foundational paper about holography [arXiv:hep-th/9802150].