论文标题

在稀疏因子分析模型中控制稀疏性:分段线性维度降低的自适应潜在特征共享

Controlling for sparsity in sparse factor analysis models: adaptive latent feature sharing for piecewise linear dimensionality reduction

论文作者

Farooq, Adam, Raykov, Yordan P., Raykov, Petar, Little, Max A.

论文摘要

无处不在的线性高斯探索性工具,例如原理组件分析(PCA)和因子分析(FA),仍被广泛用作:探索性分析,预处理,数据可视化和相关任务的工具。但是,由于其严格的假设包括高维数据的拥挤,因此在许多情况下,它们被更灵活且仍然可以解释的潜在特征模型所取代。通常使用假定遵循参数beta-bernoulli分布或贝叶斯非参数之前的离散潜在变量对特征分配进行建模。在这项工作中,我们提出了一个简单且可进行的参数特征分配模型,该模型可以解决当前潜在特征分解技术的关键局限性。新框架可以明确控制用于表达每个点的功能的数量,并启用更灵活的分配分布组,包括具有不同稀疏度级别的功能分配。这种方法用于得出一种新型的自适应因子分析(AFA),以及在广泛的情况下,能够灵活结构发现和降低维度降低的自适应概率原理分析(APPCA)。我们得出了标准的Gibbs采样器,也得出了一种期望 - 最大化推理算法,该算法将更快的数量级收敛到合理的点估计解决方案。为标准的PCA任务(例如功能学习,数据可视化和数据美白)展示了所提出的APPCA模型的实用性。我们表明,AppCA和AFA可以推断出在RAW MNIST上以及用于解释自动编码器功能时,可以推断出可解释的高级功能。我们还证明了AppCA在功能磁共振成像(fMRI)中的更强大的盲源分离中的应用。

Ubiquitous linear Gaussian exploratory tools such as principle component analysis (PCA) and factor analysis (FA) remain widely used as tools for: exploratory analysis, pre-processing, data visualization and related tasks. However, due to their rigid assumptions including crowding of high dimensional data, they have been replaced in many settings by more flexible and still interpretable latent feature models. The Feature allocation is usually modelled using discrete latent variables assumed to follow either parametric Beta-Bernoulli distribution or Bayesian nonparametric prior. In this work we propose a simple and tractable parametric feature allocation model which can address key limitations of current latent feature decomposition techniques. The new framework allows for explicit control over the number of features used to express each point and enables a more flexible set of allocation distributions including feature allocations with different sparsity levels. This approach is used to derive a novel adaptive Factor analysis (aFA), as well as, an adaptive probabilistic principle component analysis (aPPCA) capable of flexible structure discovery and dimensionality reduction in a wide case of scenarios. We derive both standard Gibbs sampler, as well as, an expectation-maximization inference algorithms that converge orders of magnitude faster to a reasonable point estimate solution. The utility of the proposed aPPCA model is demonstrated for standard PCA tasks such as feature learning, data visualization and data whitening. We show that aPPCA and aFA can infer interpretable high level features both when applied on raw MNIST and when applied for interpreting autoencoder features. We also demonstrate an application of the aPPCA to more robust blind source separation for functional magnetic resonance imaging (fMRI).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源