论文标题
全球表面温度分布的时空演化
Spatio-temporal evolution of global surface temperature distributions
论文作者
论文摘要
气候以强烈的非线性和混乱行为而闻名。然而,很少有气候科学研究采用专门为非平稳或非线性系统设计的统计方法。在这里,我们展示了信息理论中统计方法的使用如何描述气候领域的非平稳行为,揭示了可能难以识别的空间和时间模式。我们使用NCEP CDAS1每日重新分析数据在地面两米处研究最高温度,空间分辨率为2.5 x 2.5度,并涵盖了从1948年1月1日至2018年11月30日的时间段。温度时间序列的空间和时间演化是使用Fisher信息量度来检索的,该信息量量量;该信息量度量化了shannon and shannon and shannon and and annnann and annann and annann and annnann and的信息。不可预测性。结果描述了分析变量的时间行为。我们的发现表明,热带和温带地区现在的特征是熵水平较高。最后,引入了Fisher-Shannon的复杂性并应用于研究每日最大表面温度分布的演变。
Climate is known for being characterised by strong non-linearity and chaotic behaviour. Nevertheless, few studies in climate science adopt statistical methods specifically designed for non-stationary or non-linear systems. Here we show how the use of statistical methods from Information Theory can describe the non-stationary behaviour of climate fields, unveiling spatial and temporal patterns that may otherwise be difficult to recognize. We study the maximum temperature at two meters above ground using the NCEP CDAS1 daily reanalysis data, with a spatial resolution of 2.5 by 2.5 degree and covering the time period from 1 January 1948 to 30 November 2018. The spatial and temporal evolution of the temperature time series are retrieved using the Fisher Information Measure, which quantifies the information in a signal, and the Shannon Entropy Power, which is a measure of its uncertainty -- or unpredictability. The results describe the temporal behaviour of the analysed variable. Our findings suggest that tropical and temperate zones are now characterized by higher levels of entropy. Finally, Fisher-Shannon Complexity is introduced and applied to study the evolution of the daily maximum surface temperature distributions.