论文标题
明显的Colimits和更高的辅助性
Marked colimits and higher cofinality
论文作者
论文摘要
给定一个标记的$ \ infty $ -Category $ \ MATHCAL {d}^{\ Dagger} $(即配备了指定的形态集合的$ \ infty $ -category)和函数$ f:\ nathcal {d} $ \ operatotorname {colim}^{\匕首} f $,标记的$ f $的colimit。当索引图为$ \ infty $ - 类别时,我们提供了$ \ infty $ -BICATEGOIRE中加权colimits的定义,并表明可以根据标记的colimits计算它们。在最大标记的情况下,$ \ MATHCAL {d}^{\ sharp} $,我们的构造在基础$ \ infty $ -Category $ \ Mathcal $ \ MathCal {B} \ subseteq \ subseteq \ Mathbb {b} $ {b} $中检索了$ \ infty $ -Stematorical colimit $ f $ $ f $。 In the specific case when $\mathbb{B}=\mathfrak{Cat}_{\infty}$, the $\infty$-bicategory of $\infty$-categories and $\mathcal{D}^{\flat}$ is minimally marked, we recover the definition of lax colimit of Gepner-Haugseng-Nikolaus.我们表明,相关的cocartesian纤维化$ \ permatatorName {un} _ {\ Mathcal {d}}(f)$ cumputes $ cumputes $ \ operatoRatorName {colim}^{\ dagger} f $。我们的主要定理是对标记$ \ infty $ -CATEGIORY $ f:\ MATHCAL {C}^{\ Dagger} \ to \ Mathcal {D}^{\ Dagger} $标记为Cofinal的那些函数的表征。更确切地说,我们提供了足够和必要的标准,用于限制沿$ f $的图表,以保留明显的colimits。
Given a marked $\infty$-category $\mathcal{D}^{\dagger}$ (i.e. an $\infty$-category equipped with a specified collection of morphisms) and a functor $F: \mathcal{D} \to \mathbb{B}$ with values in an $\infty$-bicategory, we define $\operatorname{colim}^{\dagger} F$, the marked colimit of $F$. We provide a definition of weighted colimits in $\infty$-bicategories when the indexing diagram is an $\infty$-category and show that they can be computed in terms of marked colimits. In the maximally marked case $\mathcal{D}^{\sharp}$, our construction retrieves the $\infty$-categorical colimit of $F$ in the underlying $\infty$-category $\mathcal{B} \subseteq \mathbb{B}$. In the specific case when $\mathbb{B}=\mathfrak{Cat}_{\infty}$, the $\infty$-bicategory of $\infty$-categories and $\mathcal{D}^{\flat}$ is minimally marked, we recover the definition of lax colimit of Gepner-Haugseng-Nikolaus. We show that a suitable $\infty$-localization of the associated coCartesian fibration $\operatorname{Un}_{\mathcal{D}}(F)$ computes $\operatorname{colim}^{\dagger} F$. Our main theorem is a characterization of those functors of marked $\infty$-categories $f:\mathcal{C}^{\dagger} \to \mathcal{D}^{\dagger}$ which are marked cofinal. More precisely, we provide sufficient and necessary criteria for the restriction of diagrams along $f$ to preserve marked colimits.