论文标题

LinkedIn的深入理解

Deep Job Understanding at LinkedIn

论文作者

Li, Shan, Shi, Baoxu, Yang, Jaewon, Yan, Ji, Wang, Shuai, Chen, Fei, He, Qi

论文摘要

作为世界上最大的专业网络,LinkedIn希望为全球劳动力中的每个人创造经济机会。其最关键的任务之一是将工作与游行队伍匹配。提高目标准确性的工作,并雇用与LinkedIn成员的第一个座右铭的效率。为了实现这些目标,我们需要使用嘈杂的信息来了解非结构化的职位发布。我们应用了深入的转移学习来创建特定领域的工作理解模型。此后,工作由职业实体(包括头衔,技能,公司和评估问题)代表。为了不断提高LinkedIn的工作理解能力,我们设计了一个专家反馈循环,我们将工作理解模型整合到LinkedIn的产品中,以收集工作海报的反馈。在此演示中,我们介绍了LinkedIn的职位发布流程,并演示了综合的深层工作理解工作如何提高工作海报的满意度,并在LinkedIn的工作推荐系统中提供了重要的指标升降机。

As the world's largest professional network, LinkedIn wants to create economic opportunity for everyone in the global workforce. One of its most critical missions is matching jobs with processionals. Improving job targeting accuracy and hire efficiency align with LinkedIn's Member First Motto. To achieve those goals, we need to understand unstructured job postings with noisy information. We applied deep transfer learning to create domain-specific job understanding models. After this, jobs are represented by professional entities, including titles, skills, companies, and assessment questions. To continuously improve LinkedIn's job understanding ability, we designed an expert feedback loop where we integrated job understanding models into LinkedIn's products to collect job posters' feedback. In this demonstration, we present LinkedIn's job posting flow and demonstrate how the integrated deep job understanding work improves job posters' satisfaction and provides significant metric lifts in LinkedIn's job recommendation system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源