论文标题

在创建基准数据集以进行航空图像解释:评论,指导和百万艾滋病

On Creating Benchmark Dataset for Aerial Image Interpretation: Reviews, Guidances and Million-AID

论文作者

Long, Yang, Xia, Gui-Song, Li, Shengyang, Yang, Wen, Yang, Michael Ying, Zhu, Xiao Xiang, Zhang, Liangpei, Li, Deren

论文摘要

过去几年在遥感(RS)图像解释及其广泛的应用方面取得了巨大进展。随着RS图像比以往任何时候都更容易访问,对这些图像的自动解释的需求不断增长。在这种情况下,基准数据集是开发和测试智能解释算法的基本先决条件。在回顾了RS图像解释研究社区中现有的基准数据集后,本文讨论了如何有效准备合适的基准数据集以进行RS图像解释的问题。具体而言,我们首先分析了通过文献计量学研究开发用于RS图像解释的智能算法的当前挑战。然后,我们介绍了以有效的方式创建基准数据集的一般指南。按照提出的指南,我们还提供了一个示例,以构建RS图像数据集,即百万艾滋病,这是一个新的大规模基准数据集,其中包含一个用于RS图像场景分类的实例。最终讨论了RS图像注释中的几个挑战和观点,以促进基准数据集构建中的研究。我们希望本文将为RS社区提供有关构建大规模和实用图像数据集的总体视角,以供进一步的研究,尤其是数据驱动的图像数据集。

The past years have witnessed great progress on remote sensing (RS) image interpretation and its wide applications. With RS images becoming more accessible than ever before, there is an increasing demand for the automatic interpretation of these images. In this context, the benchmark datasets serve as essential prerequisites for developing and testing intelligent interpretation algorithms. After reviewing existing benchmark datasets in the research community of RS image interpretation, this article discusses the problem of how to efficiently prepare a suitable benchmark dataset for RS image interpretation. Specifically, we first analyze the current challenges of developing intelligent algorithms for RS image interpretation with bibliometric investigations. We then present the general guidances on creating benchmark datasets in efficient manners. Following the presented guidances, we also provide an example on building RS image dataset, i.e., Million-AID, a new large-scale benchmark dataset containing a million instances for RS image scene classification. Several challenges and perspectives in RS image annotation are finally discussed to facilitate the research in benchmark dataset construction. We do hope this paper will provide the RS community an overall perspective on constructing large-scale and practical image datasets for further research, especially data-driven ones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源