论文标题

电气中的六倍激发

Six-fold Excitations in Electrides

论文作者

Nie, Simin, Bernevig, B. Andrei, Wang, Zhijun

论文摘要

由于缺乏凝结物理学中的完全旋转对称性,固体在狄拉克和韦尔弗里米斯以外表现出了新的激发,由于玻色孔系统中最大的退化,六倍的激发引起了极大的兴趣。在这里,我们建议在电气li $ _ {12} $ mg $ _3 $ si $ _4 $及其衍生物中找到单个线性分散式激发。六倍的激发是由基本带表示的浮动带($ a@12a $)形成的,源自以空缺为中心的多余电子($ {\ iti.e。} $,$ 12a $ wyckoff网站)。存在着无旋转六倍激发的独特拓扑散装 - 表边缘的对应关系,导致了琐碎的表面“费米弧”,但非平凡的铰链弧。所有充满活力的$ k_z $ - slices都属于二维(2D)高阶拓扑阶段,该阶段由组合的对称性$ {\ Mathcal t} {\ Mathcal t} {\ wideDilde s_ {4z}}} $保护,并由量化的分数角收费$ q_} $ q_} $ Q _} $ |因此,在$ \ widetilde s_ {4z} $ - 对称杆结构的铰链光谱中获得铰链弧。具有单个六倍激发的状态,由非晶格晶体对称性和时间反向对称性稳定,位于相边界处,可以通过显式破坏对称性的拓扑上的不同阶段,通过显式破坏对称性,从而使这些电视具有有希望的平台,以实现不同拓扑相的系统性研究。

Due to the lack of full rotational symmetry in condensed matter physics, solids exhibit new excitations beyond Dirac and Weyl fermions, of which the six-fold excitations have attracted considerable interest owing to the presence of the maximum degeneracy in bosonic systems. Here, we propose that a single linear dispersive six-fold excitation can be found in the electride Li$_{12}$Mg$_3$Si$_4$ and its derivatives. The six-fold excitation is formed by the floating bands of elementary band representation -- $A@12a$ -- originating from the excess electrons centered at the vacancies (${\it i.e.}$, the $12a$ Wyckoff sites). There exists a unique topological bulk-surface-edge correspondence for the spinless six-fold excitation, resulting in trivial surface 'Fermi arcs' but nontrivial hinge arcs. All energetically-gapped $k_z$-slices belong to a two-dimensional (2D) higher-order topological insulating phase, which is protected by a combined symmetry ${\mathcal T}{\widetilde S_{4z}}$ and characterized by a quantized fractional corner charge $Q_{corner}=\frac{3|e|}{4}$. Consequently, the hinge arcs are obtained in the hinge spectra of the $\widetilde S_{4z}$-symmetric rod structure. The state with a single six-fold excitation, stabilized by both nonsymmorphic crystalline symmetries and time-reversal symmetry, is located at the phase boundary and can be driven into various topologically distinct phases by explicit breaking of symmetries, making these electrides promising platforms for the systematic studies of different topological phases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源