论文标题

语义具有辅助模式间磁共振图像的多尺度重建

Semantic Features Aided Multi-Scale Reconstruction of Inter-Modality Magnetic Resonance Images

论文作者

Srinivasan, Preethi, Kaur, Prabhjot, Nigam, Aditya, Bhavsar, Arnav

论文摘要

由于多模式的MR图像(尤其是具有更长AQT的T2加权图像(T2WI)),虽然对疾病诊断有益,但由于多模式MR图像(尤其是T2加权图像(T2WI)的串联获取),实际上是不良的,这实际上是不希望的,这实际上是不受欢迎的。我们提出了一种基于深层网络的新型解决方案,以使用编码器decoder架构从T1W图像(T1WI)重建T2W图像。通过在两个正交方向上使用具有强度值和图像梯度的多通道输入,提出的学习具有语义特征。通过模块化训练对内置的编码器模型(SBM)内置的编码器模型(rm)以及域名模块(DAM)加强网络(DAM)。提出的网络通过可忽略不计的定性伪像和定量损失大大减少了总AQT(在大约1秒钟内重建一个体积)。该测试是在具有真实MR图像的公开数据集上进行的,并且建议的网络显示(约1DB)PSNR比SOTA增加了。

Long acquisition time (AQT) due to series acquisition of multi-modality MR images (especially T2 weighted images (T2WI) with longer AQT), though beneficial for disease diagnosis, is practically undesirable. We propose a novel deep network based solution to reconstruct T2W images from T1W images (T1WI) using an encoder-decoder architecture. The proposed learning is aided with semantic features by using multi-channel input with intensity values and gradient of image in two orthogonal directions. A reconstruction module (RM) augmenting the network along with a domain adaptation module (DAM) which is an encoder-decoder model built-in with sharp bottleneck module (SBM) is trained via modular training. The proposed network significantly reduces the total AQT with negligible qualitative artifacts and quantitative loss (reconstructs one volume in approximately 1 second). The testing is done on publicly available dataset with real MR images, and the proposed network shows (approximately 1dB) increase in PSNR over SOTA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源