论文标题
有效的平滑近端梯度算法,用于凸聚类
An Efficient Smoothing Proximal Gradient Algorithm for Convex Clustering
论文作者
论文摘要
集群分析将数据组织成合理的分组,是理解和学习的基本模式之一。由于局部最小值,广泛使用的K-均值和分层聚类方法可以极低。最近引入的凸聚类方法将聚类作为凸优化问题制定,并确保全球最佳解决方案。但是,最新的凸聚类算法基于乘数的交替方向方法(ADMM)或交替的最小化算法(AMA),需要大量的计算和存储空间,从而限制其应用程序。在本文中,我们开发了一种非常有效的平滑近端梯度算法(SPROGA),用于凸聚类。我们的Sproga比基于ADMM或AMA的凸聚类算法的速度快一个到两个数量级。 Sproga要求的记忆空间少于ADMM和AMA所要求的记忆空间至少一个数量级。计算机模拟和实际数据分析表明,Sproga的表现优于几种众所周知的聚类算法,包括K-均值和分层聚类。我们的算法的效率和卓越性能将有助于凸聚类以找到其广泛的应用。
Cluster analysis organizes data into sensible groupings and is one of fundamental modes of understanding and learning. The widely used K-means and hierarchical clustering methods can be dramatically suboptimal due to local minima. Recently introduced convex clustering approach formulates clustering as a convex optimization problem and ensures a globally optimal solution. However, the state-of-the-art convex clustering algorithms, based on the alternating direction method of multipliers (ADMM) or the alternating minimization algorithm (AMA), require large computation and memory space, which limits their applications. In this paper, we develop a very efficient smoothing proximal gradient algorithm (Sproga) for convex clustering. Our Sproga is faster than ADMM- or AMA-based convex clustering algorithms by one to two orders of magnitude. The memory space required by Sproga is less than that required by ADMM and AMA by at least one order of magnitude. Computer simulations and real data analysis show that Sproga outperforms several well known clustering algorithms including K-means and hierarchical clustering. The efficiency and superior performance of our algorithm will help convex clustering to find its wide application.