论文标题
完整的关节重量枚举者和自偶代码的平均值
Average of complete joint weight enumerators and self-dual codes
论文作者
论文摘要
在本文中,我们给出了两个线性枚举的平均枚举的平均值,该枚举的平均值是两个线性代码,长度为$ n $,超过$ \ Mathbb {f} _ {q} $和$ \ Mathbb {z} _ {k} _ {k} _ {k} $,以$ N $的组成及其在代码中的分配。我们还获得了代码的平均$ g $ - 折叠权重枚举$ \ Mathbb {f} _ {q} $和$ \ MATHBB {z} _ {k} $的平均概括。最后,找到了一对III型(分别IV型)代码的相交数量的平均值及其第二刻。
In this paper, we give a representation of the average of complete joint weight enumerators of two linear codes of length $n$ over $\mathbb{F}_{q}$ and $\mathbb{Z}_{k}$ in terms of the compositions of $n$ and their distributions in the codes. We also obtain a generalization of the representation for the average of $g$-fold complete joint weight enumerators of codes over $\mathbb{F}_{q}$ and $\mathbb{Z}_{k}$. Finally, the average of intersection numbers of a pair of Type III (resp. Type IV) codes, and its second moment are found.