论文标题
迭代引起的gromov双曲线图
Gromov Hyperbolic Graphs Arising From Iterations
论文作者
论文摘要
对于一个合同的迭代功能系统(IFS),众所周知,IFS的符号空间上有一个自然的双曲图结构(增强树),反映了相邻细胞之间的关系,并且其与Gromov指标的双曲线边界相当于吸引子$ k $。该设置用于研究$ k $的概率潜在理论,以及$ k $的bi-lipschitz等价。在本文中,我们制定了一类称为膨胀双曲线图的宽双曲线图,以捕获增强树和双曲线边界的最重要的特性(例如,特殊的测量学,有界程度的特性,度量倍加倍的特性和Hölder等价)。我们还研究了新的“加权” IFS设置,并研究了分形分析中的自相似能量形式的联系。
For a contractive iterated function system (IFS), it is known that there is a natural hyperbolic graph structure (augmented tree) on the symbolic space of the IFS that reflects the relationship among neighboring cells, and its hyperbolic boundary with the Gromov metric is Hölder equivalent to the attractor $K$. This setup was taken up to study the probabilistic potential theory on $K$, and the bi-Lipschitz equivalence on $K$. In this paper, we formulate a broad class of hyperbolic graphs, called expansive hyperbolic graphs, to capture the most essential properties from the augmented trees and the hyperbolic boundaries (e.g., the special geodesics, bounded degree property, metric doubling property, and Hölder equivalence). We also study a new setup of "weighted" IFS and investigate its connection with the self-similar energy form in the analysis of fractals.