论文标题
旋转 - 等级神经网络以保护隐私保护
Rotation-Equivariant Neural Networks for Privacy Protection
论文作者
论文摘要
为了防止中级功能中的输入信息泄漏,本文提出了一种将传统神经网络修改为旋转量等神经网络(RENN)的方法。与传统的神经网络相比,Renn使用D- ARY矢量/张量作为特征,其中每个元素都是D- ARY数字。这些D- ARY特征可以旋转(类似于D维矢量的旋转),以随机角度作为加密过程。输入信息隐藏在属性混淆的D-ary特征的此目标阶段中。即使攻击者获得了网络参数和中间层特征,他们也无法在不知道目标阶段的情况下提取输入信息。因此,输入隐私可以受到RENN的有效保护。此外,与传统的神经网络相比,RENN的产出精度仅降低了,并且计算成本明显小于同构加密。
In order to prevent leaking input information from intermediate-layer features, this paper proposes a method to revise the traditional neural network into the rotation-equivariant neural network (RENN). Compared to the traditional neural network, the RENN uses d-ary vectors/tensors as features, in which each element is a d-ary number. These d-ary features can be rotated (analogous to the rotation of a d-dimensional vector) with a random angle as the encryption process. Input information is hidden in this target phase of d-ary features for attribute obfuscation. Even if attackers have obtained network parameters and intermediate-layer features, they cannot extract input information without knowing the target phase. Hence, the input privacy can be effectively protected by the RENN. Besides, the output accuracy of RENNs only degrades mildly compared to traditional neural networks, and the computational cost is significantly less than the homomorphic encryption.