论文标题
粒子的圆轨道和弱重力镜头
Circular orbit of a particle and weak gravitational lensing
论文作者
论文摘要
本文的目的是双重的。首先,我们引入了一种基于雅各比公制的静态和球形对称时空中粒子的圆轨道的几何方法。其次,我们将圆形轨道应用于基于高斯 - 骨网定理的空和时间样颗粒的弱重力偏转。通过这种方式,我们获得了偏转角的表达,并将挠度角的研究扩展到渐近非平板黑洞的空间。一些黑洞作为镜头被认为,例如在保形的Weyl重力中的静态和球形对称的黑洞,以及Bumblebee Gravity中的Schwarzschild样黑洞。我们的结果与以前的文献一致。特别是,我们发现高斯曲率与圆形轨道半径之间的联系大大简化了计算。
The purpose of this paper is twofold. First, we introduce a geometric approach to study the circular orbit of a particle in static and spherically symmetric spacetime based on Jacobi metric. Second, we apply the circular orbit to study the weak gravitational deflection of null and time-like particles based on Gauss-Bonnet theorem. By this way, we obtain an expression of deflection angle and extend the study of deflection angle to asymptotically non-flat black hole spacetimes. Some black holes as lens are considered such as a static and spherically symmetric black hole in the conformal Weyl gravity and a Schwarzschild-like black hole in bumblebee gravity. Our results are consistent with the previous literature. In particular, we find that the connection between Gaussian curvature and the radius of a circular orbit greatly simplifies the calculation.