论文标题
离散的几个pan隐私学习
Discrete Few-Shot Learning for Pan Privacy
论文作者
论文摘要
在本文中,我们介绍了第一个基线结果,即几次学习离散嵌入向量以进行图像识别的任务。很少有学习的任务是一项经过深入研究的任务,通常由识别系统利用,这些系统被资源限制为每班少量图像训练。几个射击系统通常会存储每个类的连续嵌入向量,在系统违规或内部威胁引起关注的情况下对隐私构成风险。使用离散嵌入向量,我们设计了一个简单的加密协议,该协议使用单向哈希功能来构建识别系统,这些识别系统不会直接存储其用户的嵌入向量,从而在实用且广泛的环境中提供了计算锅隐私的保证。
In this paper we present the first baseline results for the task of few-shot learning of discrete embedding vectors for image recognition. Few-shot learning is a highly researched task, commonly leveraged by recognition systems that are resource constrained to train on a small number of images per class. Few-shot systems typically store a continuous embedding vector of each class, posing a risk to privacy where system breaches or insider threats are a concern. Using discrete embedding vectors, we devise a simple cryptographic protocol, which uses one-way hash functions in order to build recognition systems that do not store their users' embedding vectors directly, thus providing the guarantee of computational pan privacy in a practical and wide-spread setting.