论文标题

在拥塞光谱环境中进行雷达检测和跟踪的深度加固学习控制

Deep Reinforcement Learning Control for Radar Detection and Tracking in Congested Spectral Environments

论文作者

Thornton, Charles E., Kozy, Mark A., Buehrer, R. Michael, Martone, Anthony F., Sherbondy, Kelly D.

论文摘要

在本文中,通过使用深度强化学习(DEEP RL)应用非线性值函数近似来解决最佳雷达性能的策略,从而解决了认知脉冲雷达和附近通信系统之间的动态非合并共存。雷达学会改变其线性频率调制(LFM)波形的带宽和中心频率,以减轻与其他系统的相互干扰,并改善目标检测性能,同时还可以维持良好范围分辨率所需的可用频带的充分利用。我们证明,基于深度Q学习(DQL)算法,我们的方法增强了重要的雷达指标,包括SINR和带宽利用率,比政策迭代或感官及其感官和避免态度(SAA)方法在各种现实的共有环境中都更有效。我们还扩展了基于DQL的方法,以结合双Q-学习和复发性神经网络,以形成双重重复的Q-NETWORK(DDRQN)。与DQL和政策迭代相比,我们证明了DDRQN的结果具有良好的性能和稳定性。最后,我们通过讨论在软件定义的雷达(SDRADAR)原型系统上进行的实验来证明我们提出的方法的实用性。我们的实验结果表明,与政策迭代和SAA相比,提出的深度RL方法可显着改善拥挤光谱环境中的雷达检测性能。

In this paper, dynamic non-cooperative coexistence between a cognitive pulsed radar and a nearby communications system is addressed by applying nonlinear value function approximation via deep reinforcement learning (Deep RL) to develop a policy for optimal radar performance. The radar learns to vary the bandwidth and center frequency of its linear frequency modulated (LFM) waveforms to mitigate mutual interference with other systems and improve target detection performance while also maintaining sufficient utilization of the available frequency bands required for a fine range resolution. We demonstrate that our approach, based on the Deep Q-Learning (DQL) algorithm, enhances important radar metrics, including SINR and bandwidth utilization, more effectively than policy iteration or sense-and-avoid (SAA) approaches in a variety of realistic coexistence environments. We also extend the DQL-based approach to incorporate Double Q-learning and a recurrent neural network to form a Double Deep Recurrent Q-Network (DDRQN). We demonstrate the DDRQN results in favorable performance and stability compared to DQL and policy iteration. Finally, we demonstrate the practicality of our proposed approach through a discussion of experiments performed on a software defined radar (SDRadar) prototype system. Our experimental results indicate that the proposed Deep RL approach significantly improves radar detection performance in congested spectral environments when compared to policy iteration and SAA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源