论文标题

在模拟神经形态硬件上使用人工神经网络的推断

Inference with Artificial Neural Networks on Analog Neuromorphic Hardware

论文作者

Weis, Johannes, Spilger, Philipp, Billaudelle, Sebastian, Stradmann, Yannik, Emmel, Arne, Müller, Eric, Breitwieser, Oliver, Grübl, Andreas, Ilmberger, Joscha, Karasenko, Vitali, Kleider, Mitja, Mauch, Christian, Schreiber, Korbinian, Schemmel, Johannes

论文摘要

神经形态的脑表2 ASIC包括混合信号神经元和突触电路以及两个多功能数字微处理器。该系统主要设计用于模拟尖峰神经网络,还可以在人工神经网络的矢量矩阵乘法和累积模式下运行。模拟乘法在突触电路中进行,而结果积聚在神经元的膜电容器上。它设计为一​​种模拟,内存计算设备,有望具有高能量效率。但是,固定图案的噪声和试验变化需要实现的网络来应对一定程度的扰动。进一步的限制是通过输入值(5位),矩阵权重(6位)和产生的神经元激活(8位)的数字分辨率施加的。在本文中,我们讨论了Brainscales-2作为模拟推理加速器和当前的校准以及优化策略,突出了循环中硬件培训的优势。在其他基准测试中,我们使用二维卷积和两个密集的层对MNIST手写数字数据集进行了分类。我们达到98.0%的测试精度,与在软件中评估的同一网络的性能紧密匹配。

The neuromorphic BrainScaleS-2 ASIC comprises mixed-signal neurons and synapse circuits as well as two versatile digital microprocessors. Primarily designed to emulate spiking neural networks, the system can also operate in a vector-matrix multiplication and accumulation mode for artificial neural networks. Analog multiplication is carried out in the synapse circuits, while the results are accumulated on the neurons' membrane capacitors. Designed as an analog, in-memory computing device, it promises high energy efficiency. Fixed-pattern noise and trial-to-trial variations, however, require the implemented networks to cope with a certain level of perturbations. Further limitations are imposed by the digital resolution of the input values (5 bit), matrix weights (6 bit) and resulting neuron activations (8 bit). In this paper, we discuss BrainScaleS-2 as an analog inference accelerator and present calibration as well as optimization strategies, highlighting the advantages of training with hardware in the loop. Among other benchmarks, we classify the MNIST handwritten digits dataset using a two-dimensional convolution and two dense layers. We reach 98.0% test accuracy, closely matching the performance of the same network evaluated in software.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源