论文标题

稳定的有限元方法,用于对流扩散方程。 II:以对流为主的制度

A stabilized finite element method for inverse problems subject to the convection-diffusion equation. II: convection-dominated regime

论文作者

Burman, Erik, Nechita, Mihai, Oksanen, Lauri

论文摘要

我们考虑了固定对流扩散方程不足的数据同化问题的数值近似,并在[Numer中扩展了我们先前的分析。数学。 144,451--477,2020]到对流为主的制度。稍微调整提出主要扩散的稳定有限元方法,我们利用局部误差分析,通过数据集获得对流场特征的准最佳收敛。重量功能乘以离散解决方案为Lipschitz,并证明相应的超近似结果(离散换向属性)。数据扰动的效果包括在分析中,我们通过一些数值实验总结了本文。

We consider the numerical approximation of the ill-posed data assimilation problem for stationary convection-diffusion equations and extend our previous analysis in [Numer. Math. 144, 451--477, 2020] to the convection-dominated regime. Slightly adjusting the stabilized finite element method proposed for dominant diffusion, we draw upon a local error analysis to obtain quasi-optimal convergence along the characteristics of the convective field through the data set. The weight function multiplying the discrete solution is taken to be Lipschitz and a corresponding super approximation result (discrete commutator property) is proven. The effect of data perturbations is included in the analysis and we conclude the paper with some numerical experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源