论文标题

带有目标条件的层次预测指标的长马视觉计划

Long-Horizon Visual Planning with Goal-Conditioned Hierarchical Predictors

论文作者

Pertsch, Karl, Rybkin, Oleh, Ebert, Frederik, Finn, Chelsea, Jayaraman, Dinesh, Levine, Sergey

论文摘要

预测和计划未来的能力对于世界上作用的代理商是基础。为了达到一个遥远的目标,我们预测在多个时间尺度上的轨迹,首先为目标设计一个粗略的计划,然后逐渐填写细节。相比之下,当前的视觉预测和计划学习方法在长期任务时会在不考虑目标信息的情况下生成预测(1),并且(2)以最佳的时间分辨率,一次是一步。在这项工作中,我们为视觉预测和计划提出了一个能够克服这两个限制的框架。首先,我们提出了对目标进行预测的问题,并提出了相应的潜在空间目标条件预测变量(GCP)。 GCP通过将搜索空间限制为仅实现目标的轨迹来显着提高计划效率。此外,我们展示了如何自然表述为层次模型的GCP,从而给定两个观察结果,可以预测它们之间的观察结果,并通过递归细分轨迹生成完整的序列。这种划分和纠纷策略在长期预测上是有效的,使我们能够设计一种有效的层次规划算法,以粗到更细致的方式优化轨迹。我们表明,通过使用目标条件和分层预测,GCPS使我们能够以比以前更长的范围更长地求解视觉计划任务。

The ability to predict and plan into the future is fundamental for agents acting in the world. To reach a faraway goal, we predict trajectories at multiple timescales, first devising a coarse plan towards the goal and then gradually filling in details. In contrast, current learning approaches for visual prediction and planning fail on long-horizon tasks as they generate predictions (1) without considering goal information, and (2) at the finest temporal resolution, one step at a time. In this work we propose a framework for visual prediction and planning that is able to overcome both of these limitations. First, we formulate the problem of predicting towards a goal and propose the corresponding class of latent space goal-conditioned predictors (GCPs). GCPs significantly improve planning efficiency by constraining the search space to only those trajectories that reach the goal. Further, we show how GCPs can be naturally formulated as hierarchical models that, given two observations, predict an observation between them, and by recursively subdividing each part of the trajectory generate complete sequences. This divide-and-conquer strategy is effective at long-term prediction, and enables us to design an effective hierarchical planning algorithm that optimizes trajectories in a coarse-to-fine manner. We show that by using both goal-conditioning and hierarchical prediction, GCPs enable us to solve visual planning tasks with much longer horizon than previously possible.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源