论文标题

特征态制备的经认证的变性量子算法

Certified variational quantum algorithms for eigenstate preparation

论文作者

Kardashin, Andrey, Uvarov, Alexey, Yudin, Dmitry, Biamonte, Jacob

论文摘要

多体问题实例的解决方案通常涉及棘手的自由度,并且承认一般形式没有已知的近似值。实际上,使用可用的数值方法,特别是基于变异的蒙特卡洛模拟的量子力学状态,随着系统大小的增加,基于变异的蒙特卡洛模拟的量子状态变得更加挑战。最近,已经提出了作为变异模型实施的量子算法来加速此类模拟。差异ANSATZ状态的特征是多项式数量的参数以一种方式,以最大程度地减少给定哈密顿量的期望值,这是通过局部测量模拟的。在这项研究中,我们开发了一种证明终止变异算法的方法。我们通过将其应用于三个模型来证明我们的方法:横向场模型,具有竞争相互作用的一维无旋式费米子的模型以及量子电动力学的Schwinger模型。通过比较,我们观察到我们的方法在这些模型中的关键点附近显示出更好的性能。因此,我们采取进一步的一步来提高适用性并认证变分量子模拟器的结果。

Solutions to many-body problem instances often involve an intractable number of degrees of freedom and admit no known approximations in general form. In practice, representing quantum-mechanical states of a given Hamiltonian using available numerical methods, in particular those based on variational Monte Carlo simulations, become exponentially more challenging with increasing system size. Recently quantum algorithms implemented as variational models have been proposed to accelerate such simulations. The variational ansatz states are characterized by a polynomial number of parameters devised in a way to minimize the expectation value of a given Hamiltonian, which is emulated by local measurements. In this study, we develop a means to certify the termination of variational algorithms. We demonstrate our approach by applying it to three models: the transverse field Ising model, the model of one-dimensional spinless fermions with competing interactions, and the Schwinger model of quantum electrodynamics. By means of comparison, we observe that our approach shows better performance near critical points in these models. We hence take a further step to improve the applicability and to certify the results of variational quantum simulators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源