论文标题
高阶拓扑泵送及其在光子晶格中的观察
Higher-order topological pumping and its observation in photonic lattices
论文作者
论文摘要
通过thouless [phys。 Rev. B 27,6083(1983)]将Chern Number连接起来,Chern数字是一种表征二维电子气体量子霍尔效应的拓扑不变的,在一个维度上的动态周期系统的拓扑。在这里,我们演示了其高阶拓扑的对应物。具体而言,我们表明,具有消失的偶极矩(因此总颗粒传输)的二维晶体中的绝热循环可能在拓扑上是不平凡的。这些周期与高阶拓扑相关,可以通过它们在某些超材料平台中产生一角运输的能力来诊断。我们通过使用一系列在分离和折射率的光绝热调制的光子波导的阵列来验证与该拓扑泵相关的角传输的角转弯。通过映射此处从两个空间和一个时间维度到三个空间维度的动力学现象,我们的观察值等于在三维二阶拓扑绝缘子中观察手性铰链状态。
The discovery of the quantization of particle transport in adiabatic pumping cycles of periodic structures by Thouless [Phys. Rev. B 27, 6083 (1983)] linked the Chern number, a topological invariant characterizing the quantum Hall effect in two-dimensional electron gases, with the topology of dynamical periodic systems in one dimension. Here, we demonstrate its counterpart for higher-order topology. Specifically, we show that adiabatic cycles in two-dimensional crystals with vanishing dipole moments (and therefore zero overall particle transport) can nevertheless be topologically nontrivial. These cycles are associated with higher-order topology and can be diagnosed by their ability to produce corner-to-corner transport in certain metamaterial platforms. We experimentally verify the corner to corner transport associated with this topological pump by using an array of photonic waveguides adiabatically modulated in their separations and refractive indices. By mapping the dynamical phenomenon demonstrated here from two spatial and one temporal dimensions to three spatial dimensions, our observations are equivalent to the observation of chiral hinge states in a three-dimensional second-order topological insulator.