论文标题

刺激域墙壁

Exciting the Domain Wall Soliton

论文作者

Blanco-Pillado, Jose J., Jiménez-Aguilar, Daniel, Urrestilla, Jon

论文摘要

现场理论中的许多孤子配置在线性扰动范围中具有局部结合状态。这打开了长期以来对这些孤儿产生激励的可能性,这些孤儿可能会影响其动态。我们以$ 1+1 $尺寸的$ λϕ^4 $理论的最简单配置开始对这些效果的研究。我们表明该解决方案具有单个结合状态,并在数字上研究其在平面中的缓慢衰减率。然后,我们通过模拟宇宙学期转换来研究这种激发的幅度,该宇宙相变导致这些扭结在不断扩展的宇宙中形成。我们发现,相对于其最低能量配置,扭结以$ 20 \%$的能量过量形成。我们还探索与热浴相互作用的扭结溶液,并提取局部激发的幅度随温度的函数。我们注意到,这种振幅随温度的增加而增加,但扭结中的额外能量再也不会超过$ 20 \%$的水平。最后,我们认为,这种额外的能量可能在数值模拟中缺陷的后续演变中产生重要影响。

Many solitonic configurations in field theory have localized bound states in their spectrum of linear perturbations. This opens up the possibility of having long lived excitations of these solitons that could affect their dynamics. We start the study of these effects in the simplest configuration of a domain wall kink solution in the $λϕ^4$ theory in $1+1$ dimensions. We show that this solution has a single bound state and numerically study its slow decay rate in flat space. We then investigate the amplitude of this excitation by simulating a cosmological phase transition that leads to the formation of these kinks in an expanding universe. We find that kinks get formed with a $20\%$ excess of energy with respect to their lowest energy configuration. We also explore the kink solution interacting with a thermal bath and extract the amplitude of the localized excitation as a function of temperature. We note that this amplitude increases with temperature but again the extra energy in the kink never goes over the $20\%$ level. Finally, we argue that this extra energy may have important consequences in the subsequent evolution of defects in numerical simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源