论文标题
学习:基于学习的碰撞避免可扩展的城市空气流动性
Learning-to-Fly: Learning-based Collision Avoidance for Scalable Urban Air Mobility
论文作者
论文摘要
随着城市人口的增加,全球对城市空气流动性(UAM)的兴趣,在城市空间中,数百个自动无人飞机系统(UAS)在城市上方的空域执行任务。与传统的人类空中交通管理不同,UAM需要分散的自主方法,以扩大飞机密度较高的数量级,并且适用于城市环境。我们为多个UAS提供了学习 - fly(L2F),这是一个分散的对空中碰撞避免框架,可让他们独立计划并使用信号时间逻辑表达的空间,时间和反应性目标安全地执行任务。我们提出了一个问题的问题,即在不违反任务目标的混合整数线性计划(MILP)的情况下进行预测避免在两个UAS之间发生碰撞。但是,这很难在线解决。取而代之的是,我们开发了L2F,这是一种两阶段的回避方法,该方法包括:1)基于学习的决策方案和2)分布式的,线性编程的UAS控制算法。通过大量的模拟,我们显示了我们方法的实时适用性,该方法比MILP方法快于$ \!6000 \ times $ $ $,并且在有足够的操作空间时可以解决$ 100 \%的碰撞,并且否则表现出优雅的绩效下降。我们还将L2F与另外两种方法进行比较,并在四轮旋转机器人上演示了实现。
With increasing urban population, there is global interest in Urban Air Mobility (UAM), where hundreds of autonomous Unmanned Aircraft Systems (UAS) execute missions in the airspace above cities. Unlike traditional human-in-the-loop air traffic management, UAM requires decentralized autonomous approaches that scale for an order of magnitude higher aircraft densities and are applicable to urban settings. We present Learning-to-Fly (L2F), a decentralized on-demand airborne collision avoidance framework for multiple UAS that allows them to independently plan and safely execute missions with spatial, temporal and reactive objectives expressed using Signal Temporal Logic. We formulate the problem of predictively avoiding collisions between two UAS without violating mission objectives as a Mixed Integer Linear Program (MILP).This however is intractable to solve online. Instead, we develop L2F, a two-stage collision avoidance method that consists of: 1) a learning-based decision-making scheme and 2) a distributed, linear programming-based UAS control algorithm. Through extensive simulations, we show the real-time applicability of our method which is $\approx\!6000\times$ faster than the MILP approach and can resolve $100\%$ of collisions when there is ample room to maneuver, and shows graceful degradation in performance otherwise. We also compare L2F to two other methods and demonstrate an implementation on quad-rotor robots.