论文标题

图表上的积分流量和周期芯片冲击

Integral flow and cycle chip-firing on graphs

论文作者

Dochtermann, Anton, Meyers, Eli, Samavedan, Raghav, Yi, Alex

论文摘要

由平面图的双图上的芯片射击概念的动机,我们考虑在任意图$ g $上考虑“积分流芯片”。筹码规则由$ {\ Mathcal l}^*(g)$,$ $ {\ mathcal l}^*(g)$,$ g $的双laplacian通过选择$ g $的整体流量的基础来确定。我们表明,任何图表都允许这样一个基础,因此$ {\ Mathcal l}^*(g)$是$ M $ -MATRIX,导致对这些基础元素的触发规则,这是雪崩有限的。这是从更一般的结果基础上的整体晶格基础上产生的,这可能具有独立的关注。我们的结果提供了$ z $ - 敏锐的流程配置的概念,这些配置与$ g $的一组跨越树相同。我们表明,对于平面图,以及图形$ k_5 $和$ k_ {3,3} $,人们可以找到由基础图的周期组成的流动m基础。我们考虑任意图的问题并解决了一些开放问题。

Motivated by the notion of chip-firing on the dual graph of a planar graph, we consider `integral flow chip-firing' on an arbitrary graph $G$. The chip-firing rule is governed by ${\mathcal L}^*(G)$, the dual Laplacian of $G$ determined by choosing a basis for the lattice of integral flows on $G$. We show that any graph admits such a basis so that ${\mathcal L}^*(G)$ is an $M$-matrix, leading to a firing rule on these basis elements that is avalanche finite. This follows from a more general result on bases of integral lattices that may be of independent interest. Our results provide a notion of $z$-superstable flow configurations that are in bijection with the set of spanning trees of $G$. We show that for planar graphs, as well as for the graphs $K_5$ and $K_{3,3}$, one can find such a flow M-basis that consists of cycles of the underlying graph. We consider the question for arbitrary graphs and address some open questions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源