论文标题

对称扩散操作员的加权强度不平等和自我接触性

The weighted Hardy inequality and self-adjointness of symmetric diffusion operators

论文作者

Robinson, Derek W.

论文摘要

令$ \ ri^d $中的一个域,带有边界$γ$$ {\! $ c_ {kl} = c_ {lk} $是真实的,有限的,Lipschitz函数。我们假设$ c \ sim c \,d_γ^{\,δ} $是$d_γ\ to0 $,在渐近分析的意义上,$ c $是严格的正面,有限的,lipschitz的功能和$Δ\ geq0 $。我们还假设有一个$ r> 0 $和a $ b_ {δ,r}> 0 $,以便加权hardy不平等\ [\ int_ {γ_{γ_{\!\! b_ {δ,r}^{\,2} \ int_ {γ_{\!\!r}}d_γ^{\,δ-2} \,| ψ|^2 \]对于C_C^\ Infty(γ_{\!\!r})中的所有$ψ\均有效,其中$γ_{\!\!r} = \ {x \inΩ:d_γ(x)<r \ \} $。然后,我们证明条件$(2-δ)/2 <b_δ$足以满足$ c_c^\ infty(ω)$的基本自我相关性,而$b_Δ$ the supremum the supremum超过了所有可能的$ b_ {δ,r} $的$ r $。该结果扩展了具有平滑边界的域的所有已知结果,还提供了有关具有粗糙(例如\ \ fractal,边界)的大型域的自相关性的信息。

Let $Ω$ be a domain in $\Ri^d$ with boundary $Γ$${\!,}$ $d_Γ$ the Euclidean distance to the boundary and $H=-\divv(C\,\nabla)$ an elliptic operator with $C=(\,c_{kl}\,)>0$ where $c_{kl}=c_{lk}$ are real, bounded, Lipschitz functions. We assume that $C\sim c\,d_Γ^{\,δ}$ as $d_Γ\to0$ in the sense of asymptotic analysis where $c$ is a strictly positive, bounded, Lipschitz function and $δ\geq0$. We also assume that there is an $r>0$ and a $ b_{δ,r}>0$ such that the weighted Hardy inequality \[ \int_{Γ_{\!\!r}} d_Γ^{\,δ}\,|\nabla ψ|^2\geq b_{δ,r}^{\,2}\int_{Γ_{\!\!r}} d_Γ^{\,δ-2}\,| ψ|^2 \] is valid for all $ψ\in C_c^\infty(Γ_{\!\!r})$ where $Γ_{\!\!r}=\{x\inΩ: d_Γ(x)<r\}$. We then prove that the condition $(2-δ)/2<b_δ$ is sufficient for the essential self-adjointness of $H$ on $C_c^\infty(Ω)$ with $b_δ$ the supremum over $r$ of all possible $b_{δ,r}$ in the Hardy inequality. This result extends all known results for domains with smooth boundaries and also gives information on self-adjointness for a large family of domains with rough, e.g.\ fractal, boundaries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源