论文标题

免疫指纹通过曲目相似性

Immune Fingerprinting through Repertoire Similarity

论文作者

Dupic, Thomas, Koraichi, Meriem Bensouda, Minervina, Anastasia, Pogorelyy, Mikhail, Mora, Thierry, Walczak, Aleksandra M.

论文摘要

免疫曲目提供了一种独特的指纹,反映了个体的免疫病史,并具有潜在的精密医学应用。但是,尚未探索该信息的个人信息以及如何使用该信息来识别个人的问题。在这里,我们表明可以从仅数千种淋巴细胞的曲目中唯一地识别个人。我们介绍了“密码”,这是一种使用信息理论的曲目相似性的分类器,以区分来自同一个人与不同个体的曲目样本对。使用已发表的T细胞受体曲目和统计建模,我们通过计算由10,000个T细胞组成的样本中计算假阳性和假负率$ <10^{ - 6} $,测试了其准确性(包括相同双胞胎)的个人的能力。我们通过纵向数据集和模拟验证了该方法对急性感染和时间的流逝是可靠的。这些结果强调了曲目数据的私人和个人性质。

Immune repertoires provide a unique fingerprint reflecting the immune history of individuals, with potential applications in precision medicine. However, the question of how personal that information is and how it can be used to identify individuals has not been explored. Here, we show that individuals can be uniquely identified from repertoires of just a few thousands lymphocytes. We present "Immprint," a classifier using an information-theoretic measure of repertoire similarity to distinguish pairs of repertoire samples coming from the same versus different individuals. Using published T-cell receptor repertoires and statistical modeling, we tested its ability to identify individuals with great accuracy, including identical twins, by computing false positive and false negative rates $< 10^{-6}$ from samples composed of 10,000 T-cells. We verified through longitudinal datasets and simulations that the method is robust to acute infections and the passage of time. These results emphasize the private and personal nature of repertoire data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源