论文标题

回顾性损失:回想改善深度神经网络的培训

Retrospective Loss: Looking Back to Improve Training of Deep Neural Networks

论文作者

Jandial, Surgan, Chopra, Ayush, Sarkar, Mausoom, Gupta, Piyush, Krishnamurthy, Balaji, Balasubramanian, Vineeth

论文摘要

深度神经网络(DNNS)是强大的学习机器,在几个领域都具有突破性。在这项工作中,我们引入了新的回顾性损失,以利用培训期间过去模型状态中可用的先前经验来改善对深神经网络模型的训练。将回顾性损失以及特定于任务的损失最小化,将当前训练步骤的参数状态推向最佳参数状态,同时在先前的训练步骤中将其从参数状态拉开。尽管一个简单的想法,但我们分析了该方法以及进行跨域(图像,语音,文本和图形)的全面实验集,以表明所提出的损失会导致跨输入域,任务和体系结构的跨性能提高。

Deep neural networks (DNNs) are powerful learning machines that have enabled breakthroughs in several domains. In this work, we introduce a new retrospective loss to improve the training of deep neural network models by utilizing the prior experience available in past model states during training. Minimizing the retrospective loss, along with the task-specific loss, pushes the parameter state at the current training step towards the optimal parameter state while pulling it away from the parameter state at a previous training step. Although a simple idea, we analyze the method as well as to conduct comprehensive sets of experiments across domains - images, speech, text, and graphs - to show that the proposed loss results in improved performance across input domains, tasks, and architectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源