论文标题
冯·诺伊曼(Von Neumann)纠缠熵的确切差异
Exact variance of von Neumann entanglement entropy over the Bures-Hall measure
论文作者
论文摘要
量子状态之间的Bures-hall距离度量是一个独特的度量,它满足量子信息处理的各种有用属性。在这项工作中,我们研究了通过von Neumann熵测量的Bures-Burs Gelembles上量子纠缠的统计行为。最近已经获得了这种整体上的平均冯·诺伊曼(Von Neumann)熵,而这项工作的主要结果是相应方差的明确表达,该方差指定了其平均值围绕其平均值的波动。计算的起点是Bures-hall集合的相关函数与Cauchy-Laguerre集合的相关函数之间的联系。派生的方差公式与已知的平均公式一起,导致了一个简单但准确的高斯近似,以达到有限大小系统的von Neumann熵的分布。这种高斯近似也被认为是大维系统的限制分布。
The Bures-Hall distance metric between quantum states is a unique measure that satisfies various useful properties for quantum information processing. In this work, we study the statistical behavior of quantum entanglement over the Bures-Hall ensemble as measured by von Neumann entropy. The average von Neumann entropy over such an ensemble has been recently obtained, whereas the main result of this work is an explicit expression of the corresponding variance that specifies the fluctuation around its average. The starting point of the calculations is the connection between correlation functions of the Bures-Hall ensemble and these of the Cauchy-Laguerre ensemble. The derived variance formula, together with the known mean formula, leads to a simple but accurate Gaussian approximation to the distribution of von Neumann entropy of finite-size systems. This Gaussian approximation is also conjectured to be the limiting distribution for large dimensional systems.