论文标题
激子散射引起的二维半导体的分类
Exciton-Scattering-Induced Dephasing in Two-Dimensional Semiconductors
论文作者
论文摘要
单层过渡金属二分法中增强的库仑相互作用会导致紧密结合的电子孔对(激子),从而主导了其线性和非线性光学响应。后者包括漂白,能量重量化和高阶库仑相关效应,例如biexcitons和激发引起的dephasing(EID)。虽然对前三个进行了广泛的研究,但到目前为止,尚未在激子主导的半导体中进行开斋节的理论基础。在这项研究中,我们基于激子海森堡运动方程提出了微观计算,并确定了光学泵送的激子与激子 - 外激体散射连续性的耦合,这是负责光功率依赖性线宽扩展(EID)和侧带形成的领先机制。进行时间,动量和能量分辨的模拟,我们对最常见的单层过渡金属二核苷的EID进行定量评估,并与最近的实验找到了极好的一致性。
Enhanced Coulomb interactions in monolayer transition metal dichalcogenides cause tightly bound electron-hole pairs (excitons) which dominate their linear and nonlinear optical response. The latter includes bleaching, energy renormalizations, and higher-order Coulomb correlation effects like biexcitons and excitation-induced dephasing (EID). While the first three are extensively studied, no theoretical footing for EID in exciton dominated semiconductors is available so far. In this study, we present microscopic calculations based on excitonic Heisenberg equations of motion and identify the coupling of optically pumped excitons to exciton-exciton scattering continua as the leading mechanism responsible for an optical power dependent linewidth broadening (EID) and sideband formation. Performing time-, momentum-, and energy-resolved simulations, we quantitatively evaluate the EID for the most common monolayer transition metal dichalcogenides and find an excellent agreement with recent experiments.