论文标题

深层网状网络:3D跟踪,无监督的连续流程学习

DeepTracking-Net: 3D Tracking with Unsupervised Learning of Continuous Flow

论文作者

Yuan, Shuaihang, Li, Xiang, Fang, Yi

论文摘要

本文讨论了3D跟踪的问题,即以一系列时间变化的3D形状找到密集的对应关系。尽管深度学习的方法已经达到了成对密度的3D形状匹配的有希望的性能,但要概括这些方法以跟踪3D时变的几何形状,这是一个巨大的挑战。在本文中,我们旨在处理3D跟踪的问题,该问题提供了3D形状连续帧的跟踪。我们提出了一个名为DeepTracking-Net的新型无监督的3D形状注册框架,该框架使用深神经网络(DNN)作为辅助函数,以在空间和时间上产生以时间顺序对物体进行3D跟踪的空间和时间连续位移字段。我们的主要新颖性是,我们提出了一种新颖的时间感知对应器描述符(TCD),该描述符(TCD)从连续的3D点云帧中捕获时空本质。具体而言,我们的深层网络始于优化随机初始化的潜在TCD。然后将TCD解码以回归连续流(即位移矢量场),该流量将运动向量分配给每个时间变化的3D形状。我们的深层网络共同优化了TCD和DNNS的权重,以最大程度地减少无监督的一致性损失。对模拟数据集和真实数据集的实验表明,我们的无监督深层网络的表现优于当前监督的最新方法。此外,我们将新的合成3D数据(名为Synmotions)编写为3D跟踪和识别社区。

This paper deals with the problem of 3D tracking, i.e., to find dense correspondences in a sequence of time-varying 3D shapes. Despite deep learning approaches have achieved promising performance for pairwise dense 3D shapes matching, it is a great challenge to generalize those approaches for the tracking of 3D time-varying geometries. In this paper, we aim at handling the problem of 3D tracking, which provides the tracking of the consecutive frames of 3D shapes. We propose a novel unsupervised 3D shape registration framework named DeepTracking-Net, which uses the deep neural networks (DNNs) as auxiliary functions to produce spatially and temporally continuous displacement fields for 3D tracking of objects in a temporal order. Our key novelty is that we present a novel temporal-aware correspondence descriptor (TCD) that captures spatio-temporal essence from consecutive 3D point cloud frames. Specifically, our DeepTracking-Net starts with optimizing a randomly initialized latent TCD. The TCD is then decoded to regress a continuous flow (i.e. a displacement vector field) which assigns a motion vector to every point of time-varying 3D shapes. Our DeepTracking-Net jointly optimizes TCDs and DNNs' weights towards the minimization of an unsupervised alignment loss. Experiments on both simulated and real data sets demonstrate that our unsupervised DeepTracking-Net outperforms the current supervised state-of-the-art method. In addition, we prepare a new synthetic 3D data, named SynMotions, to the 3D tracking and recognition community.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源