论文标题

通过肺结节的随访预测来学习肿瘤的生长

Learning Tumor Growth via Follow-Up Volume Prediction for Lung Nodules

论文作者

Li, Yamin, Yang, Jiancheng, Xu, Yi, Xu, Jingwei, Ye, Xiaodan, Tao, Guangyu, Xie, Xueqian, Liu, Guixue

论文摘要

随访在肺癌的肺结核管理中起重要作用。已经达成了与专家共识的成像诊断准则,以帮助放射科医生为每个患者做出临床决定。然而,肿瘤的生长是一个复杂的过程,因此很难根据形态学特征从低风险的结节中分层高风险结节。另一方面,最近使用卷积神经网络(CNN)预测结节的恶性评分的深度学习研究仅为临床医生提供黑盒预测。为此,我们提出了一个统一的统一框架,称为Nodule随访预测网络(NOFONET),该框架预测了具有高质量视觉外观和准确定量结果的肺结核的生长,从基线观察结果中给出了任何时间间隔。它是通过使用warpnet预测每个体素的未来位移场来实现的。进一步开发了纹理素,以完善Warpnet输出的质地细节。我们还介绍了包括时间编码模块和经线分割损失的技术,以鼓励时间感知和形状感知的表示表示。我们从两个医疗中心构建了一个内部后续数据集,以验证该方法的有效性。 Nofonet在视觉质量方面显着优于U-NET的直接预测。更重要的是,它证明了高风险结节和低风险结节之间的准确区分性能。我们有希望的结果表明,计算机辅助干预措施的肺结节管理潜力。

Follow-up serves an important role in the management of pulmonary nodules for lung cancer. Imaging diagnostic guidelines with expert consensus have been made to help radiologists make clinical decision for each patient. However, tumor growth is such a complicated process that it is difficult to stratify high-risk nodules from low-risk ones based on morphologic characteristics. On the other hand, recent deep learning studies using convolutional neural networks (CNNs) to predict the malignancy score of nodules, only provides clinicians with black-box predictions. To this end, we propose a unified framework, named Nodule Follow-Up Prediction Network (NoFoNet), which predicts the growth of pulmonary nodules with high-quality visual appearances and accurate quantitative results, given any time interval from baseline observations. It is achieved by predicting future displacement field of each voxel with a WarpNet. A TextureNet is further developed to refine textural details of WarpNet outputs. We also introduce techniques including Temporal Encoding Module and Warp Segmentation Loss to encourage time-aware and shape-aware representation learning. We build an in-house follow-up dataset from two medical centers to validate the effectiveness of the proposed method. NoFoNet significantly outperforms direct prediction by a U-Net in terms of visual quality; more importantly, it demonstrates accurate differentiating performance between high- and low-risk nodules. Our promising results suggest the potentials in computer aided intervention for lung nodule management.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源