论文标题
火灾模拟中内部CGM的病毒化及其对星系盘,星形形成和反馈的影响
Virialization of the inner CGM in the FIRE simulations and implications for galaxy discs, star formation and feedback
论文作者
论文摘要
我们使用FIRE-2宇宙学模拟研究红移0 <z <5的圆形培养基(CGM)中的准静态,病毒温度气相的形成,以及这种病毒式化相的形成如何影响银河盘的演变。我们证明,当光晕质量穿过〜10^12 m_sun时,内部CGM中震动气的冷却时间(〜0.1 r_vir,r_vir是病毒半径)超过了局部自由下落时间。然后,内部CGM经历了从平均亚次病毒温度(T << T_VIR),较大的压力波动和超音速流入/流出速度,病毒温度(T_T_VIR),均匀压力和亚音速速度的过渡。当外部CGM(〜0.5 r_vir)已经是亚音速且温度〜T_VIR时,这种转变发生,这表明大半径较长的冷却时间允许外部CGM在较低的光环质量上与内CGM相比,在较低的光环质量上进行病毒化。这种外部的CGM病毒化场景与基于更理想化的模拟通常设想的内外场景形成鲜明对比。我们证明,内部CGM病毒化与中央星系的突然变化及其出色的反馈相吻合:星系沉降到稳定的旋转盘,恒星形成从“爆发”到“稳定和恒星驱动的银河系尺度流出的过渡。因此,我们的结果表明,CGM病毒化最初与旋转主导的薄银盘的形成有关,而不是通常假定的恒星形成的淬火。
We use the FIRE-2 cosmological simulations to study the formation of a quasi-static, virial-temperature gas phase in the circumgalactic medium (CGM) at redshifts 0<z<5, and how the formation of this virialized phase affects the evolution of galactic discs. We demonstrate that when the halo mass crosses ~10^12 M_sun, the cooling time of shocked gas in the inner CGM (~0.1 R_vir, where R_vir is the virial radius) exceeds the local free-fall time. The inner CGM then experiences a transition from on average sub-virial temperatures (T<<T_vir), large pressure fluctuations and supersonic inflow/outflow velocities, to virial temperatures (T~T_vir), uniform pressures and subsonic velocities. This transition occurs when the outer CGM (~0.5 R_vir) is already subsonic and has a temperature ~T_vir, indicating that the longer cooling times at large radii allow the outer CGM to virialize at lower halo masses than the inner CGM. This outside-in CGM virialization scenario is in contrast with inside-out scenarios commonly envisioned based on more idealized simulations. We demonstrate that inner CGM virialization coincides with abrupt changes in the central galaxy and its stellar feedback: the galaxy settles into a stable rotating disc, star formation transitions from `bursty' to `steady,' and stellar-driven galaxy-scale outflows are suppressed. Our results thus suggest that CGM virialization is initially associated with the formation of rotation-dominated thin galactic discs, rather than with the quenching of star formation as often assumed.