论文标题
在多Quit实验中缓解测量误差
Mitigating measurement errors in multi-qubit experiments
论文作者
论文摘要
减少多量量子设备中的测量误差对于执行任何量子算法至关重要。在这里,我们通过经典的测量结果后处理来显示如何减轻测量误差。我们的技术适用于用于计算可观察结果的预期值的任何实验。基于张量产品和相关的马尔可夫噪声模型提出了两个误差缓解方案。参数化这些噪声模型的错误率可以使用简单公式从测量校准数据中提取。通过将反向噪声矩阵应用于代表嘈杂测量结果的概率向量来实现误差。误差缓解开销,包括测量数量和经典后处理的成本,在$εn$中指数为指数,其中$ε$是最大错误率,$ n $是Qubits的数量。我们使用$ n \ le 12 $ Qubits的图形状态的稳定器测量结果报告了在IBM量子设备上使用错误缓解方法的实验证明,并由低深度随机Clifford电路产生的20 Quit状态。
Reducing measurement errors in multi-qubit quantum devices is critical for performing any quantum algorithm. Here we show how to mitigate measurement errors by a classical post-processing of the measured outcomes. Our techniques apply to any experiment where measurement outcomes are used for computing expected values of observables. Two error mitigation schemes are presented based on tensor product and correlated Markovian noise models. Error rates parameterizing these noise models can be extracted from the measurement calibration data using a simple formula. Error mitigation is achieved by applying the inverse noise matrix to a probability vector that represents the outcomes of a noisy measurement. The error mitigation overhead, including the the number of measurements and the cost of the classical post-processing, is exponential in $εn$, where $ε$ is the maximum error rate and $n$ is the number of qubits. We report experimental demonstration of our error mitigation methods on IBM Quantum devices using stabilizer measurements for graph states with $n\le 12$ qubits and entangled 20-qubit states generated by low-depth random Clifford circuits.