论文标题
量子标志歧管$σ$ -Models和Hermitian Ricci流
Quantum flag manifold $σ$-models and Hermitian Ricci flow
论文作者
论文摘要
我们表明,标志歧管$σ$ -Models(包括$ \ mathbb {cp}^{n-1} $,格拉斯曼尼亚模型作为特殊情况),它们的变形版本可以以仪表的玻色剂/毛刺/gross-gross-neveu-neveu-type系统的形式施放。量子机械地,量子违反了手性异常,可以通过添加费米子来取消。我们猜想这样的模型是可以集成的,并检查了一些示例,即三角变形的几何形状满足了广义的RICCI流动方程。
We show that flag manifold $σ$-models (including $\mathbb{CP}^{n-1}$, Grassmannian models as special cases) and their deformed versions may be cast in the form of gauged bosonic Thirring/Gross-Neveu-type systems. Quantum mechanically the gauging is violated by chiral anomalies, which may be cancelled by adding fermions. We conjecture that such models are integrable and check on some examples that the trigonometrically deformed geometries satisfy the generalized Ricci flow equations.