论文标题

使用神经网络的SU(N)费米体热力学研究的启发式机制

Heuristic machinery for thermodynamic studies of SU(N) fermions with neural networks

论文作者

Zhao, Entong, Lee, Jeongwon, He, Chengdong, Ren, Zejian, Hajiyev, Elnur, Liu, Junwei, Jo, Gyu-Boong

论文摘要

机器学习的力量(ML)提供了以前所未有的灵敏度分析实验测量的可能性。但是,探测与物理可观察物直接相关的微妙效果并使用ML从普通实验数据中理解物理学的微妙效果仍然具有挑战性。在这里,我们通过使用机器学习分析引入启发式机械。我们使用机械来指导在量子模拟器中制备的SU($ n $)旋转对称性内相互作用的超速费米的密度曲线中的热力学研究。尽管这种自旋对称性应该在多体波弹性中表现出来,但难以捉摸的效果分布如何揭示了自旋对称性的效果。使用训练有素的卷积神经网络(NN),其准确度为$ \ sim $ 94 $ \%$用于检测自旋多重性,我们研究了准确性如何取决于通过过滤的实验图像的各种较不发表的效果。在我们的机械指导下,我们直接测量了单个图像中密度波动的热力学可压缩性。我们的机器学习框架显示了验证SU($ n $)费米液体的理论描述的潜力,即使对于高度复杂的量子物质也以最少的先验理解,也可以确定较不发音的效果。

The power of machine learning (ML) provides the possibility of analyzing experimental measurements with an unprecedented sensitivity. However, it still remains challenging to probe the subtle effects directly related to physical observables and to understand physics behind from ordinary experimental data using ML. Here, we introduce a heuristic machinery by using machine learning analysis. We use our machinery to guide the thermodynamic studies in the density profile of ultracold fermions interacting within SU($N$) spin symmetry prepared in a quantum simulator. Although such spin symmetry should manifest itself in a many-body wavefuction, it is elusive how the momentum distribution of fermions, the most ordinary measurement, reveals the effect of spin symmetry. Using a fully trained convolutional neural network (NN) with a remarkably high accuracy of $\sim$94$\%$ for detection of the spin multiplicity, we investigate how the accuracy depends on various less-pronounced effects with filtered experimental images. Guided by our machinery, we directly measure a thermodynamic compressibility from density fluctuations within the single image. Our machine learning framework shows a potential to validate theoretical descriptions of SU($N$) Fermi liquids, and to identify less-pronounced effects even for highly complex quantum matter with minimal prior understanding.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源