论文标题
SRFLOW:通过标准化流程学习超分辨率空间
SRFlow: Learning the Super-Resolution Space with Normalizing Flow
论文作者
论文摘要
超分辨率是一个不适的问题,因为它允许为给定的低分辨率图像进行多个预测。基于最先进的深度学习方法在很大程度上忽略了这个基本事实。相反,这些方法使用重建和对抗损失的组合训练确定性映射。因此,在这项工作中,我们提出了SRFLOW:一种基于归一化流量的超分辨率方法,能够在低分辨率输入下学习输出的条件分布。我们的模型以原则上的方式进行了训练,即使用单个损失,即负模样。因此,SRFLOF直接说明了问题的不足性质,并学会了预测各种照片现实的高分辨率图像。此外,我们利用SRFLOF通过SRFLOW学到的强大图像后验来设计灵活的图像操纵技术,能够通过(例如,从其他图像中传输内容)增强超级分辨图像。我们对面部以及一般的超分辨率进行了广泛的实验。 SRFlow在PSNR和感知质量指标方面都超过了最先进的基于GAN的方法,同时通过探索超级分辨解决方案的空间允许多样性。
Super-resolution is an ill-posed problem, since it allows for multiple predictions for a given low-resolution image. This fundamental fact is largely ignored by state-of-the-art deep learning based approaches. These methods instead train a deterministic mapping using combinations of reconstruction and adversarial losses. In this work, we therefore propose SRFlow: a normalizing flow based super-resolution method capable of learning the conditional distribution of the output given the low-resolution input. Our model is trained in a principled manner using a single loss, namely the negative log-likelihood. SRFlow therefore directly accounts for the ill-posed nature of the problem, and learns to predict diverse photo-realistic high-resolution images. Moreover, we utilize the strong image posterior learned by SRFlow to design flexible image manipulation techniques, capable of enhancing super-resolved images by, e.g., transferring content from other images. We perform extensive experiments on faces, as well as on super-resolution in general. SRFlow outperforms state-of-the-art GAN-based approaches in terms of both PSNR and perceptual quality metrics, while allowing for diversity through the exploration of the space of super-resolved solutions.