论文标题
关于简单的系统,代表限制自注代代数
On simple-minded systems over representation-finite self-injective algebras
论文作者
论文摘要
让$ a $是代表封闭的字段$ k $的表示形式的自我注射代数。我们为稳定模块类别中的正交系统提供了新的特征,以成为一个简单的系统。作为副产品,我们表明,$ A $ - $ \ stmod $中的每个Nakayama稳定的正交系统都扩展到一个简单的系统。
Let $A$ be a representation-finite self-injective algebra over an algebraically closed field $k$. We give a new characterization for an orthogonal system in the stable module category $A$-$\stmod$ to be a simple-minded system. As a by-product, we show that every Nakayama-stable orthogonal system in $A$-$\stmod$ extends to a simple-minded system.