论文标题

与许多或几片叶子的跨越树的重新配置

Reconfiguration of Spanning Trees with Many or Few Leaves

论文作者

Bousquet, Nicolas, Ito, Takehiro, Kobayashi, Yusuke, Mizuta, Haruka, Ouvrard, Paul, Suzuki, Akira, Wasa, Kunihiro

论文摘要

令$ g $为图形,$ t_1,t_2 $是$ g $的两跨树。我们说,如果在t_1 $中存在两个边缘$ e \,则可以通过边缘翻转将$ t_1 $转换为$ t_2 $,而$ t_2 $中的$ f $,这样$ t_2 =(t_1 \ setMinus e)\ cup f $。由于跨越树形成了成曲线,因此确实可以通过一系列边缘翻转将生成树转化为其他树,如Ito等人所观察到的那样。 我们研究了确定的问题,如果存在额外的属性$π$,如果存在边缘翻转转换,从$ t_1 $到$ t_2 $保持属性$π$。 首先,我们证明确定是否存在从$ t_1 $到$ t_2 $的转换,使得该序列的所有树最多都有$ k $(对于任何固定的$ k \ ge 3 $)叶子是pspace-complete。 然后,我们证明确定是否存在从$ t_1 $到$ t_2 $的转换,使得序列的所有树都至少具有$ k $叶子(其中$ k $是输入的一部分),甚至限制在pspace-complete中,甚至限制在拆分,两部分或平面图中。我们通过证明问题成为cographs,间隔图以及$ k = n-2 $的多项式来完成此结果。

Let $G$ be a graph and $T_1,T_2$ be two spanning trees of $G$. We say that $T_1$ can be transformed into $T_2$ via an edge flip if there exist two edges $e \in T_1$ and $f$ in $T_2$ such that $T_2= (T_1 \setminus e) \cup f$. Since spanning trees form a matroid, one can indeed transform a spanning tree into any other via a sequence of edge flips, as observed by Ito et al. We investigate the problem of determining, given two spanning trees $T_1,T_2$ with an additional property $Π$, if there exists an edge flip transformation from $T_1$ to $T_2$ keeping property $Π$ all along. First we show that determining if there exists a transformation from $T_1$ to $T_2$ such that all the trees of the sequence have at most $k$ (for any fixed $k \ge 3$) leaves is PSPACE-complete. We then prove that determining if there exists a transformation from $T_1$ to $T_2$ such that all the trees of the sequence have at least $k$ leaves (where $k$ is part of the input) is PSPACE-complete even restricted to split, bipartite or planar graphs. We complete this result by showing that the problem becomes polynomial for cographs, interval graphs and when $k=n-2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源