论文标题

二进制各向异性扩散张量不连续且平稳的深度完成

Discontinuous and Smooth Depth Completion with Binary Anisotropic Diffusion Tensor

论文作者

Yao, Yasuhiro, Roxas, Menandro, Ishikawa, Ryoichi, Ando, Shingo, Shimamura, Jun, Oishi, Takeshi

论文摘要

我们提出了一个无监督的实时密集深度完成,该深度稀疏的深度图由单个图像引导。我们的方法生成平滑的深度图,同时保留不同对象之间的不连续性。我们的关键思想是二进制各向异性扩散张量(B-ADT),它可以通过将其应用于变分的正则化来完全消除预期位置和方向的平滑度约束。我们还提出了一个图像引导的最近的邻居搜索(IGNN),以得出一个分段恒定深度图,该图用于B-ADT派生和变异能量的数据术语。我们的实验表明,就准确性而言,我们的方法可以胜过以前的无监督和半监督的深度完成方法。此外,由于我们产生的深度图保留了对象之间的不连续性,因此可以将结果转换为视觉上合理的点云。这是显着的,因为以前的方法在不连续的对象之间产生了不自然的表面样伪像。

We propose an unsupervised real-time dense depth completion from a sparse depth map guided by a single image. Our method generates a smooth depth map while preserving discontinuity between different objects. Our key idea is a Binary Anisotropic Diffusion Tensor (B-ADT) which can completely eliminate smoothness constraint at intended positions and directions by applying it to variational regularization. We also propose an Image-guided Nearest Neighbor Search (IGNNS) to derive a piecewise constant depth map which is used for B-ADT derivation and in the data term of the variational energy. Our experiments show that our method can outperform previous unsupervised and semi-supervised depth completion methods in terms of accuracy. Moreover, since our resulting depth map preserves the discontinuity between objects, the result can be converted to a visually plausible point cloud. This is remarkable since previous methods generate unnatural surface-like artifacts between discontinuous objects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源