论文标题

使用扩展$ \ MATHCAL {H} _2 $过滤的计算高效态度估计

Computationally Efficient Attitude Estimation with Extended $\mathcal{H}_2$ Filtering

论文作者

Kim, Sunsoo, Tadiparthi, Vaishnav, Bhattacharya, Raktim

论文摘要

使用低成本MEMS(商业货架(COTS)无人机上存在的微型电机械系统)传感器进行准确的状态估计是一个具有挑战性的问题。大多数无人机系统都使用陀螺仪,加速度计和磁力计的组合来获得测量和估计态度。在传感器融合的这种范式下,扩展的卡尔曼过滤器(EKF)是无人机态度估计的最流行算法。在这项工作中,我们提出了一种称为扩展H2滤波器的新型估计技术,该技术可以克服EKF的局限性,特别是在计算速度,内存使用情况和根平方误差方面。我们使用单位四元化来制定态度估计算法。通过解决凸优化问题,H2最佳滤波器增益是围绕名义操作点的离线设计的,并使用非线性系统动力学实现了滤波器动力学。该H2最佳估计器的这种实现称为扩展的H2估计器。该技术对四个案例进行了测试,这些案例对应于长时间运动,快速的时间尺度运动,VTOL飞机从悬停飞行到向前飞行的过渡以及整个飞行周期(从起飞到着陆)。根据上述性能指标,将其结果与EKF的结果进行了比较。

Accurate state estimation using low-cost MEMS (Micro Electro- Mechanical Systems) sensors present on Commercial-off-the-shelf (COTS) drones is a challenging problem. Most UAV systems use a combination of a gyroscope, an accelerometer, and a magnetometer to obtain measurements and estimate attitude. Under this paradigm of sensor fusion, the Extended Kalman Filter (EKF) is the most popular algorithm for attitude estimation in UAVs. In this work, we propose a novel estimation technique called extended H2 filter that can overcome the limitations of the EKF, specifically with respect to computational speed, memory usage, and root mean squared error. We formulate our attitude-estimation algorithm using unit quaternions. The H2 optimal filter gain is designed offline about a nominal operating point by solving a convex optimization problem, and the filter dynamics is implemented using the nonlinear system dynamics. This implementation of this H2 optimal estimator is referred as the extended H2 estimator. The proposed technique is tested on four cases corresponding to long time-scale motion, fast time-scale motion, transition from hover to forward flight for VTOL aircrafts, and an entire flight cycle (from take-off to landing). Its results are compared against that of the EKF in terms of the aforementioned performance metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源